
A Appendix

A.1 Performance evaluation for Ψ-learning

In this section, we evaluate the performance of the proposed ψ-learning method
on edge identification based on simulations. The performance comparison be-
tween ψ-learning and other existing methods can be found in Liang et. al..
Here we mainly evaluate the diagnostic ability and false discovery rate (FDR)
for different settings of sample size n and variable size p.

We consider the small-world network structure to simulate the brain connec-
tivity. We used R package igraph to construct the adjacency matrices Ep×p’s
and set the average neighborhood size to be 2, i.e., the total number of edges
in a graph is 2p, where p is the number of nodes (variables). Then the preci-
sion matrix Ωp×p should reflect the adjacency matrix Ep×p in the sense that
Eij = 1 ⇔ Ωij 6= 0. We generate the values of all non-zero elements in the
precision matrix independently from the uniform distribution in the interval
[0.5, 1] ∪ [−1,−0.5]. We set the diagonal values as 1 + |Λmin(Ω)| to ensure the
positive definiteness. Then, we get the covariance matrix Σ = Ω−1 and generate
X ∼ N(0,Σ).

Consider the following three (n, p) settings: (50, 100),(50, 200),(100, 200) and
set α1 = 0.1 and α2 = 0.05. Under each setting, we simulated 50 datasets
independently. Figure A.1 shows the ROC curve of the ψ-learning under various
settings. It can reflect the diagnostic ability of a binary classifier. Let us define
an experiment from P positive instances and N negative instances for some
condition. In our case, the positive instance represents there is an edge between
two nodes. The four outcomes are summarized in Table A.I. In a ROC curve,
the x, y axes stand for the specificity and sensitivity, respectively, and their
definitions are given as follow:

specificity =
TN

FN + TN
, sensitivity =

TP

TP + FN

Table A.II calculates the areas under the ROC curve (AUC) and the FDR
for each setting. Combined the results from Figure A.1 and Table A.II, we
can see as the variable size p increases , it may affect the performance of ψ-
learning, but the performance is steady overall. As the sample size n increases,
it largely improves the diagnostic ability. Under all conditions, the FDR is
steadily controlled around 0.05.

Table A.I: Outcomes of a binary decision

Actual positive (P ) Actual negative (N)

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (FN)
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Figure A.1: The ROC curves for different (n, p) settings
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Table A.II: Average areas under the ROC curves resulting from different settings

(n, p) AUC (SD) FDR (SD)

(50, 100) 0.8797 (0.0130) 0.06418 (0.04572)

(50, 200) 0.8433 (0.01697) 0.05604 (0.05753)

(100, 200) 0.9427 (0.0058) 0.04514 (0.02162)

A.2 Validation of the Ψ-learning

In order to test the reliability and stability of our model, the data for each group
(case, control) were separated into two sets randomly with equal probability, de-
note the newly generated sets as case 1, case 2, control 1, control 2, respectively.
Similar to Haxby et. al. [1], we assessed the degree of similarity among these
four datasets using the correlation coefficients. The results are given in Table
A.III. The two sets from the same group have a high degree of similarity, while
the sets from different groups are barely correlated to each other. Furthermore,
we calculated the global measures for the networks generated by the four sets
(see Table A.IV) and conducted permutation tests on those statistics to see the
significant difference (Table A.V). As we can see from the tables, the values
of the network statistics from the same groups are close to each other, while
they vary significantly from each other across groups. The results of similarity
comparisons using correlation coefficients and network statistics showed that
the proposed model is reliable.

Table A.III: Correlations among the four datasets

Case 1 Case 2 Control 1 Control 2

Case 1 - 0.3135 0.03201 0.04669

Case 2 - - 0.04297 0.03057

Control 1 - - - 0.52188

Table A.IV: Global network measures for the four datasets

Case 1 Case 2 Control 1 Control 2

Density 7.70× 10−5 6.58× 10−5 4.54× 10−4 5.12× 10−4

Mean clustering coefficient 0.0155 0.0082 0.3727 0.2889

global efficiency 0.0126 0.0141 0.3310 0.5218
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Table A.V: The p-values of the difference mean of various network measures

Density Mean clustering coefficient Global efficiency

Between case 0.91 0.94 0.99

Between control 0.67 0.36 0.33

Across groups1 < 0.01 < 0.01 0.01

1 Note that for the comparison of across groups, we took the mean difference of each

measure and calculate the corresponding p-value.

A.3 Brain network construction through the power atlas

In this session, we parcellated the fMRI data into 264 functionally defined re-
gions by Power et. al [2]. Standard preprocessing steps were applied using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), including motion correction, spa-
tial normalization to standard MNI space and spatial smoothing with an 3mm
FWHM Gaussian kernel. The influence of motion (6 parameters) was further
addressed using a regression procedure, and the functional time series were
band-pass filtered using a 0.01Hz to 0.1Hz frequency range. Finally, p = 8878
voxels were left after a t-test between the case and control groups and 264 ROIs
were extracted based on the the power atlas [2].

We used the same parameter settings as in Session III, which are γ = 25,
α1 = 0.1 and α2 = 0.01. Similar to the analysis using the AAL template, we
first summarized some global network statistics as shown in Table A.IV. Figure
A.2 (a) and (c) showed that, compared to healthy people, the brain connectivity
of the SZ patients is significantly reduced. From Figure A.2 (b) and (d), we can
see that SZ patients have lost some hub organizations on the frontal lobe like
postcentral gyrus, frontal superior gyrus right and rolandic operculum left. We
also applied the pairwise hypothesis test between the case and control groups
for a solid statistical comparison. We followed the steps mentioned in Section
2.3, setting the significance level α3 = 0.01. Figure A.3 gave the axial view of
the aberrant connectivity and Table A. IV listed the significantly aberrant hubs
(degree > mean + 3 sd).

Table A.VI: Basic measures for the case and control groups

Measures Case group Control group p-value

Density 0.0004 0.0018 < 0.01

Mean clustering coefficient 0.4394 0.6356 0.02

Transitivity 0.0100 0.0042 0.01

Characteristic path length 5.0000 2.1142 0.03

Global efficiency 0.1484 0.4815 0.03
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(a) (b)

(c) (d)

Figure A.2: Axial view of the brain connectivity based on 264 parcellation region

by Power et al.’s method. Left column shows the full connectivity for healthy

people (a) and SZ patients (c). The right column shows filtered edges with

sparsity = 0.005 for healthy individuals (b) and SZ patients (d). The colors of

the edges show the strength of connectivity.
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(a) (b)

Figure A.3: A visualization of aberrant brain connectivity and affected hub

points. Figure (a) shows the axial view of the brain. Figure (b) shows the

filtered edges with sparsity = 0.005.

Table A.VII: Identified aberrant hubs

ROI Functional system Degree

1 Rolandic operculum left (ORG) Auditory 4915

2 Postcentral gyrus left (PAG) Motor and somatosensory 4913

3 Insula gyrus right (IND) Cingulo-opercular 4913

Comparing the results of using the AAL template and the power atlas, we
find that the global measures of the brain networks basically remain the same
numerical level and the differences between the case and control group are both
significant. The power atlas is more sensitive to capture the aberrance on the
frontal lobe, while the AAL template tends to identify the abnormality on the
temporal lobe. We have detected that the postcentral gyrus (PA) are signifi-
cantly aberrant using both templates, which reveals the importance of PA to
the SZ disease.
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