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• Functional connectivity (FC) has become a primary way of 

understanding brain functions. Popular methods for FC analysis 

always apply statistical association among brain regions, which is 

a good starting point for estimating brain network interactions. 

With in-depth study, the causal interactions in brain need to be 

revealed. 

• In this work, we study the causal networks to understand the 

mechanisms underlying Schizophrenia (SZ). We analyze the 

fMRI images of healthy and SZ subjects from the Mind Clinical 

Imaging Consortium (MCIC) and design a two-step Bayesian 

network analysis for this case-control study. 
• We reveal that compared to healthy people, SZ patients have a 

diminished ability to combine specialized information from 

distributed brain regions. 

Abstract
The fMRI data description:

• Source: the Mind Clinical Imaging Consortium (MCIC)

• Number of subjects: 183

• 79 SZ patients (age: 34 ± 11, 22 females) 

• 104 healthy controls (age: 32 ± 11, 44 females)

• Design: sensory motor task, a block design motor response to 

auditory stimulation

The fMRI preprocessing steps:

• Standard steps using SPM 12 

• Motion correction, 

• Spatial normalization to standard MNI space (adult 

template),

• Spatial smoothing with an 3mm FWHM Gaussian kernel.

• Multiple regression step: 

• Considering the influence of motion was performed 

• The stimulus on-off contrast maps for each subject were 

collected.

• 264 region of interests (ROIs) were extracted 

• Power parcellation method

• The signal of all voxels with a sphere radius parameter of 

5 mm of each node is averaged. 

Introduction

In this paper, we propose a two-step framework to estimate multiple 

graphs that are distinct but related. 

Step 1. Greedy equivalence search (GES) for the union graph

• GES is a score-based method, which posits a scoring criterion for 

each possible circumstance, then searches for the graph with the 

highest score given the observations.

• The score criterion: the Bayesian Information Criterion (BIC)

𝐵𝐼𝐶 = − 2𝑙𝑛(𝑀𝐿) + 𝑘𝑙𝑛(𝑛)

ML: the maximum likelihood estimate, 

k: the dimension of the model, 

n: the sample size.

• Assumption: the case and control groups share a common 

graphical structure, but the strength of the connections may vary.

• Implementation: 

• Apply the GES to each group separately, 

• Use the union of the directed graphs ෠𝐺𝑢𝑛𝑖𝑜𝑛 as the 

common structure

Step 2. Lasso regression for the exact causal influence 

• Goal: estimate the directed graphs ෠𝐺𝑐𝑎𝑠𝑒 and ෠𝐺𝑐𝑜𝑛𝑡𝑟𝑜𝑙 by 

searching over the subset of ෠𝐺𝑢𝑛𝑖𝑜𝑛.

• Implementation:

For each node 𝑗 in ෠𝐺𝑘, 𝑘 = 𝑐𝑎𝑠𝑒 𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, we estimate its parents 

by regressing 𝑋𝑗
𝑘 on 𝑋𝑝𝑎𝑗( ෠𝐺𝑢𝑛𝑖𝑜𝑛)

𝑘 using LASSO penalty, then the 

weighted adjacency matrix 𝐵𝑘 = β𝑗
𝑘

𝑗=1,2,…,𝑛
for each group can be 

estimated through 

෠β𝑗
𝑘 = argmin

𝑠𝑢𝑝𝑝 β𝑗
𝑘 ⊂𝑝𝑎𝑗( ෠𝐺𝑢𝑛𝑖𝑜𝑛)

1

𝑛𝑘
𝑋𝑗
𝑘 − 𝑋𝑘β𝑗

𝑘 + λ2 β𝑗
𝑘

1

𝑋𝑗
𝑘: the observation in the 𝑘-th group for the 𝑗-th node (variable),

𝑝𝑎𝑗( ෠𝐺𝑢𝑛𝑖𝑜𝑛): the parents of 𝑗 in ෠𝐺𝑢𝑛𝑖𝑜𝑛,

𝑛𝑘: the sample size for the 𝑘-th group. 

Methods

Network statistics

• The MCC and the transitivity show significant differences 

between the case’s and control’s.

• The ability of combining specialized information from distributed 

brain regions for SZ patients may be reduced.

Hub ROIs 

• Six ROIs were identified from the different connectivity network.

• Anatomically: they are located at the left hemisphere of the brain, 

which indicate asymmetric abnormality.

• Functionally: they are closely related to auditory processing and 

task control, which give a reasonable explanation for the poor 

performance of the SZ patients during the auditory motor task. 

Conclusions

• Schizophrenia (SZ) is a chronic mental disorder characterized by 

hallucinations, derealization, delusions, loss of initiative, and 

cognitive dysfunction, which has long been believed to be 

associated with dysfunctional brain connectivity.

• Current association analysis methods to estimate the functional 

brain networks include Pearson’s correlation, partial correlation 

analysis, independent component analysis (ICA).

• Approaches that characterize statistical associations are likely a 

good starting point for estimating brain network interactions. 

However, it could be problematic since the associations only 

provide spatial connections but rather causal interactions. 

• It is natural to shift the focus to causal interactions, which can 

pinpoint the key connectivity characteristics and remove some 

redundant features for diagnosis. 

• Directed acyclic graph (DAG) models, also known as Bayesian 

networks, are designed to model causal relationships in complex 

systems.

• Classic methods for DAG identification can be divided into three 

categories: constraint-based, score-based and hybrids of these 

two methods.

• Constraint-based methods: the PC algorithm

• Score-based methods: the greedy equivalence search 

(GES) algorithm

• Existing methods have focused on estimating a single directed 

graphical model. However, in many biomedical applications such 

as the SZ study, we have data from multiple classes. 

• Therefore, we propose a two-step Bayesian network analysis to 

fit the case-control study, which considers both the similarity and 

the difference between the two groups.

Materials
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Wechat:

Schizophrenia Study
Data Implementation: through R packages

• GES: pcalg

• LASSO regression: glmnet

Parameter setting: λ = 0.25
Results:

• Causal networks

• Network comparison

• Network statistics:

• Hub ROIs: 

Figure 1. The sagittal views of the brain connectivity patterns for the case (a) and the control (b) groups. The 

arrows represent the directions of the connectivity. 

Figure 2. The shared and different brain connections between the case and control groups. The arrows 

represent the directions of the connectivity. In (b), the purple edges are the disappearing connections of SZ 

patients, while the yellow edges represent the unique patterns of SZ. 

(a) SZ patients (b) Health Controls

(a) Shared connectivity (b) Different connectivity 

Density MCC Transitivity GE

SZ patients 0.0073 0.0657 0.0716 0.162

Healthy control 0.0074 0.0758 0.0924 0.168

Table 1. Global network measures for the case and control groups 

MCC: mean clustering coefficient; GE: global efficiency

Index MNI Space Anatomical location Functional Networks

55 (-45 ,0, 9) Rolandic operculum, left Cingulo-opercular task control

73 (-30,-27,12) Insula, left Auditory

138 (-10, 11, 67) Supplementary motor area, left Ventral attention

177 (-53, -49, 43) Inferior parietal gyrus, left Fronto-parietal Task Control

178 (-23, 11, 64) Middle frontal gyrus, left Fronto-parietal Task Control

227 (-22, 7, -5) Putamen, left Subcortical

Table 2. The identified hub ROIs from different connectivity patterns 


