
A Comparison with existing methods
In this section, we compared our proposed model with 4 existing methods, which were the the PC algorithm [1],
GES [2], ICA-LiNGAM [3] and direct-LiNGAM [4] through a series of simulation studies. The graph generations
were the same as described in the main paper; see Section III.A. We simulated the random DAG G through the R
package pcalg with the edge probability d/(p− 1), where d is an edge degree parameter and p is the total number
of variables. Given G, we assigned uniformly random weights to the edges to obtain the weighted adjacency matrix
B: bij ∼ Unif(−0.8,−0.3) ∪ (0.3, 0.8), if bij ∈ E, otherwise bij = 0. Given B, we generated x = BTx + ϵ ∈ Rp

from two non-Gaussian noise selections: Exponential (Exp) and Chi-squared (Chisq) noise. The exponential noise
was set to have rate 1, i.e., ϵi ∼ exp(1), i = 1, 2, ..., p, and the chi-squared noise was set to be central with a degree
of freedom 1, i.e., ϵi ∼ χ2

1, i = 1, 2, ..., p. We then sampled the random vectors x ∈ Rn×p for each noise selection
with n = 500, p = 50, 100, 200 and the degree parameter d = 1, 2, 4 based on the models. For each scenario, we
simulated 10 datasets independently. All these algorithms can be implemented through the R package pcalg. We
set the significance level α = 0.05 (with FDR correction) for all 5 methods to obtain the estimated DAGs.

We assessed the performance of the 5 methods through the true positive rate (TPR), false discovery rate (FDR),
and structural hamming distance (SHD) [5]. SHD is a commonly used metric based on the number of operations
needed to transform the estimated DAG into the true graph [6]. In simple terms, SHD counts the total number of
edge insertions, deletions or flips during the transformation. TPR and FDR are two typical measures of a binary
classification. Let us define an experiment from P positive instances and N negative instances for some conditions.
In our case, the positive instance represents a directed edge from one node to the other. The four outcomes are
summarized in Table 1. The definitions of TPR and FDR are given as follows:

TPR =
TP

TP + FN
, FDR =

FP

FP + TP
.

Table 1: Outcomes of a binary decision

Actual positive (P ) Actual negative (N)
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

The simulation results are shown in Fig. A and Fig. B. As we can see, the ψ-LiNGAM has significantly improved
performance over direct-LiNGAM. The ψ-LiNGAM has the highest TPR while maintaining a low range of FDR
under each setting. Although the SHD grows with the variable size p, the increasing slope of the ψ-LiNGAM is the
lowest as well as the SHD value. Overall, our proposed ψ-LiNGAM has outperformed the other methods under each
setting, especially under large variable number and/or low degree parameter setting. For PC algorithm and GES,
the low TPR and high FDR are caused by their poor direction identification. To be more specific, both PC and
GES can only estimate the completed partially directed acyclic graph (CPDAG), which contains both undirected
and directed edges [1, 2]. For the undirected edges in PC and GES, we treat them as bi-directional to calculate
the metrics. The high SHD value of GES is because the GES method tends to identify more false positive edges.
Although LiNGAM has a decent performance compared to PC and GES, the false discovery rate has increased
significantly as the variable size increases. This is because the original LiNGAM method needs a large number of
samples in the relevant dimension to converge.
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(a) d=1

(b) d=2

(c) d=4

Figure A: Simulation results with the exponential noise setting, which represent the average performance in terms
of TPR, FDR and SHD under various variable (p = 50, 100, 150) and degree parameter (d = 1, 2, 4) settings with
n = 500.
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(a) d=1

(b) d=2

(c) d=4

Figure B: Simulation results with chi-squared noise setting, which represent the average performance in terms of
TPR, FDR and SHD under various variable (p = 50, 100, 150) and degree parameter (d = 1, 2, 4) settings with
n = 500.
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B Computation
Compared with the direct-LiNGAM, the computational complexity of the ψ-LiNGAM is favorable. We recorded
the mean CPU times of the two methods based on the simulation studies in Section A with various variable sizes
p’s and graph densities (d = 1, 2, 4). The simulations were run on a 4 GHz computer. The results are shown in
Table 2.

Table 2: The mean CPU times (in seconds) for d = 1, 2, 4 under various variable sizes p’s.

Method p = 50 p = 100 p = 200

ψ-LiNGAM 28.86 291.40 2130.26

Direct-LiNGAM 51.83 499.00 3806.14

C Supplementaries of the fMRI studies

(a) (b)

Figure C: (a) Illustration of the data selection and preprocessing. (b) 12 functional networks considered in this
paper. These networks are expressed in the 264 nodes of the template defined by Power et al. ([7]).
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Table 3: The 16 causal connections selected for |d| > 0.4, where L and R represent the left and the right side of the
brain, respectively.

ROI ROI
Ind. MNI AR (L/R) FN Ind. MNI AR (L/R) FN

85 (27, 16,−17) Insula (R) - −→
82 (46, 16,−30) Temporal mid pole (R) DMN

1,2,4 137 (−46, 31,−13)
Inferior frontal gyrus,

DMN −→
orbital (L)

1−4 87 (−39,−75, 44) Angular gyrus (L) DMN −→ 134 (−7,−71, 42) Precuneus (L) MRN
96 (52,−59, 36) Angular gyrus (R) DMN −→ 250 (−50,−7,−39) Inferior temporal gyrus (L) -

122 (12, 36, 20) Anterior cingulate gyrus (R) DMN −→
242 (−49, 25,−1)

Inferior frontal gyrus,
VAN

212 (−11, 26, 25) Anterior cingulate gyrus (L) SN −→ triangular (L)
1 128 (52, 7,−30) Temporal mid pole (R) DMN −→ 81 (−44, 12,−34) Temporal mid pole (L) DMN
1 163 (6,−72, 24) Cuneus (R) VN −→ 1 (−25,−98,−12) Inferior occipital lobe (L) -
1 165 (26,−79,−16) Fusiform gyrus (R) VN −→ 158 (20,−86,−2) Lingual gyrus (R) VN
1 214 (−28, 52, 21) Middle frontal gyrus (L) SN −→ 107 (−7, 51,−1) Anterior cingulate gyrus (L) DMN
1 218 (31, 56, 14) Middle frontal gyrus (R) SN −→ 215 (0, 30, 27) Anterior cingulate gyrus (L) SN
1 224 (−10,−18, 7) Thalamus (L) SCN −→ 225 (12,−17, 8) Thalamus (R) SCN

1,2,4 230 (23, 10, 1) Putamen (R) SCN −→ 231 (29, 1, 4) Putamen (R) SCN
243 (−16,−65,−20) Cerebellum 6 (L) CERE −→ 246 (1,−62,−18) Vermis 6 (R) CERE

1,3,4 251 (10,−62, 61) Precuneus (R) DAN −→ 256 (22,−65, 48) Superior parietal gyrus (R) DAN
259 (−33,−46, 47) Inferior parietal gyrus (L) DAN −→ 92 (8,−48, 31) Anterior cingulate gyrus (R) DMN

1 There is a significant WRAT effect on the connection.
2 There is a significant gender effect on the connection.
3 There is a significant age effect on the connection.
4 There is a significant age × gender interaction on the connection.
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