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INTRODUCTION

* Directed acyclic graph (DAG) models, also known as
Bayesian networks, are commonly used to model causal
relationships in complex systems.

« EXxisting methods have focused on estimating a single
directed graphical model. However, in many brain studies,
we have data from related classes, such as different
developmental stages and different disease states.

« Regarding statistical models, this corresponds to jointly
estimating multiple DAGs under distinct but related
conditions.

* We propose a Bayesian incorporated linear Non-Gaussian
Acyclic Model (BILINGAM)

* We apply it to the fMRI images from the Philadelphia
Neurodevelopmental Cohort (PNC), which include 855
Individuals aged 8-22 years who were divided into five
adolescence-related stages.

METHODS
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Linear non-Gaussian acyclic model (LINGAM) [1]

» The observed random vector X = (X3, ..., X,) € R,
X=B'X+e¢

B: weight matrix that can be permuted to be strictly lower

triangular

€. continuous r. v., Independent, non-Gaussian, zero means and

NoNn-zero variances

BILINGAM:

» Joint DAG estimation for multiple groups

= Consider the related but distinct information across
groups

= Effectively make use of the available data
« Main idea:
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ALGORITHM

Algorithm 1 BiLINGAM algorithm

Input: Collection of observations X* = (XF) € R"**P where k = 1,2,...,K, i =1,2,...,p and X;“s are non-

Gaussian continuous.
Output: Collection of estimated weighted adjacency matrices B*

1. Prior estimation: joint Bayesian-incorporating i/-learning.

Start:
a. For k=1,2,..., K, use the nonparanormal transformation to render X* normal (Gaussian).
b. Apply the 1)-learning method to each group k, k = 1,2,..., K separately for distinct estimation and acquire

the adjacency matrix E%F,
c. Apply the Bayesian incorporating joint estimation to strengthen the similarities among the groups and acquire

the E&F, VE.

d. Extract the prior matrix AP™°"% from EPromF — E*F J E®F| where a.f;im’k = —1, if Eiﬁm’k = 1 and
otherwise a.f;imﬂ"k = 0.
End
2. Obtain the estimated weighted DAG adjacency matrices BF: LiNGAM.
Start: For each k
a. Identify the casual order 7* using the direct LINGAM with the prior matrix APTem~,

b. Construct a strictly lower triangular matrix BF by following the causal order 7",

APriork with the same order.

and the corresponding

c. Estimate the connection strengths (B?]T = (bfj, bf;j: b;jj) consistent with AP"*"* by solving sparse regres-
sions of the form
B;ﬁ = arg min ||X;‘ — X‘T‘B;‘H%
B_'E: CSHPP(&?TM}P.&)

d. Obtain BF by converting B* to the original order.
End

SIMULATIONS
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MATERIALS

« Dataset: the Philadelphia Neurodevelopmental Cohort (PNC)
« Subjects Group age | ot

subjects

Pre-adolescence 8-12 194
Early adolescence 12-14 150

1
Number of subjects: 855 5
3 Middle adolescence 14-16 158
4
5

Age range: 8-22

Late adolescence 16-18 166
Post-adolescence 18-22 187

* Brain image: fMRI

Standard preprocessing Beta-maps for

|'Tulane
University

RESULTS

* Development of emotion-related intra- and inter- module
Connectivity

N

Vg’

Fig. 2: Causal brain connectivity development from pre-adolescence to post-adolescence. The number index
(1 fo 5) corresponds to the age category. A, Sagittal views of emotion-related node-level causal networks,
where the arrows indicate the causal flow. B, Heatmaps of the mean edge degrees, module-wise. C, |[dentified
intra- (blue arrows) and inter- (yellow arrows) module causal flows.

« Development of emotion-related hubs:
= Definition: Nodes with degrees at least two standard
deviation higher than the mean degrees
= Two types of hubs:
8 In-hubs: based on in-degrees,
centers to receive information
25 Out-hubs: based on out-degrees,
centers to convey out information

CONCLUSIONS

* We proposed the BILINGAM to jointly estimate multiple
DAGs in the high dimensional setting for non-Gaussian
data.

 The method accomplished the integration of the undirected
graph and the directed acyclic graph.

* The analysis of brain’s emotion circuit development
revealed the trajectory of directed brain circuitry during
emotion identification tasks over various adolescent groups.

« Our findings provide a causation template of emotion
processing in the developing brain.
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