
• Development of emotion-related hubs:

▪ Definition: Nodes with degrees at least two standard 

deviation higher than the mean degrees

▪ Two types of hubs: 

8 In-hubs: based on in-degrees, 

centers to receive information

25 Out-hubs: based on out-degrees, 

centers to convey out information

• Dataset: the Philadelphia Neurodevelopmental Cohort (PNC)  

• Subjects

• Brain image: fMRI

Directed acyclic graph (DAG)

• Notation: 

A graph 𝐺 = (𝑉, 𝐸)

𝑉 = {1, 2, … , 𝑝}, the node set

𝐸 ⊂ 𝑉 × 𝑉, the edge set

• Concepts:

Skeleton 𝐺𝑠𝑘𝑒: a DAG 𝐺 without the directions

Moral graph 𝐺𝑚: the undirected graph converted from a DAG 𝐺

Linear non-Gaussian acyclic model (LiNGAM) [1]

• The observed random vector 𝑋 = 𝑋1, … , 𝑋𝑝 ∈ 𝑅𝑝
𝑋 = 𝐵𝑇𝑋 + 𝜖

𝐵: weight matrix that can be permuted to be strictly lower 
triangular

𝜖: continuous r. v., Independent, non-Gaussian, zero means and 
non-zero variances

BiLiNGAM:

• Joint DAG estimation for multiple groups

▪ Consider the related but distinct information across 
groups

▪ Effectively make use of the available data

• Main idea: 

Step 1. Undirected graph estimations as prior using the Fast 
Bayesian integrative analysis (FBIA) [2]

• Principle: 𝐺𝑠𝑘𝑒 ⊂ 𝐺𝑢𝑛𝑑
Step 2.  Apply LiNGAM with the prior for DAG estimation
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2nd LOGO

• Directed acyclic graph (DAG) models, also known as 

Bayesian networks, are commonly used to model causal 

relationships in complex systems. 

• Existing methods have focused on estimating a single 

directed graphical model. However, in many brain studies, 

we have data from related classes, such as different 

developmental stages and different disease states.

• Regarding statistical models, this corresponds to jointly 

estimating multiple DAGs under distinct but related 

conditions. 

• We propose a Bayesian incorporated linear Non-Gaussian 

Acyclic Model (BiLiNGAM) 

• We apply it to the fMRI images from the Philadelphia 

Neurodevelopmental Cohort (PNC), which include 855 

individuals aged 8–22 years who were divided into five 

adolescence-related stages.

• We proposed the BiLiNGAM to jointly estimate multiple 

DAGs in the high dimensional setting for non-Gaussian 

data.

• The method accomplished the integration of the undirected 

graph and the directed acyclic graph.

• The analysis of brain’s emotion circuit development 

revealed the trajectory of directed brain circuitry during 

emotion identification tasks over various adolescent groups. 

• Our findings provide a causation template of emotion 

processing in the developing brain.

SIMULATIONS

• Total number of subjects
N = 750

• Number of groups K = 3,5

• Number of subjects for 
each group n = N/K

• Variable size (node): 

p = 200

• Simulated the random 
DAG G through the R 
package pcalg

• Average edge per node 

d =1,2,5

• Noise distribution: 
exponential

Compared 4 estimation 
methods

• PC [3]

• LiNGAM [1]

• ψ-LiNGAM [4]

• BiLiNGAM

ALGORITHM

Fig. 2: Causal brain connectivity development from pre-adolescence to post-adolescence.  The number index 

(1 to 5) corresponds to the age category. A, Sagittal views of emotion-related node-level causal networks, 

where the arrows indicate the causal flow. B, Heatmaps of the mean edge degrees, module-wise. C, Identified 

intra- (blue arrows) and inter- (yellow arrows) module causal flows.

Fig. 1: Mean TPR, FDR and SHD over various graph densities. The results 

for K = 3 are on the left. Comparisons between BiLiNGAM and ψ-

LiNGAM for K = 5 are on the right.

MATERIALS

Number of subjects: 855
Age range: 8-22

Group Age # of 

subjects

1 Pre-adolescence 8-12 194

2 Early adolescence 12-14 150

3 Middle adolescence 14-16 158

4 Late adolescence 16-18 166

5 Post-adolescence 18-22 187

Task fMRI 

Emotion identification task
• During the task, each subject was asked to 

label emotions displayed which include happy, 
angry, sad, fearful and neutral faces. 

• The total scan duration was 10.5 mins.
• Single 3T Siemens TIM Trio whole-body 

scanner

Standard preprocessing 
through SPM12

Preprocessing steps:
• Motion correction 
• Co-registration
• Normalization
• Slice time correction
• Spatial smoothing
• Bandpass filtering: 0.01-0.1Hz

Beta-maps for 
264 ROIs

• General linear regression
• Power atlas with a 5 mm 

sphere radius parameter
• 264 ROIs
• 12 functional network 

modules

• Development of emotion-related intra- and inter- module

Connectivity
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