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Functional connectivity (FC) has become a primary way of 

understanding brain function. Popular methods of FC always apply 

statistical association among brain regions, which could be 

problematic since the associations only provide spatial connections 

but not causal interactions. It is necessary to switch from 

association to causation in FC studies. Directed acyclic graph 

(DAG) models have been applied in some recent FC studies. 

However, one often encounters problems of limited sample sizes or 

large scale of variables, i.e. high-dimensional situations. For this 

reason, it is challenging to estimate DAGs in biomedical applications 

due to the computational difficulty and convergence issue. To this 

end, we propose the ψ-learning incorporated linear non-Gaussian 

acyclic model (ψ-LiNGAM). Our goal is to use the proposed method 

to analyze the causal functional connectivity of subjects in various 

cognitive ability groups using resting state fMRI and further to 

understand the cause of the cognitive variance.

Abstract

• Network summary

- Group Measures

- Different connectivity network

Criteria: two sample t-test (α = 0.05)

Cohen’s d effect size statistics

• Classification: SVM

- 8 various inputs 

- 5-fold cross validation, repeat 20 times

- Results:

1. Generally the DAG methods (PC, ψ-LiNGAM) 

are better than the association methods. 

2. When |d| > 0.4, the mean accuracy has 

increased dramatically, 

3. The 16 features captured the major differences 

between the high and low WRAT groups.

• Intra- and inter- module connectivity

- 12 functional network modules

SSN: sensory/somatomotor network
CON: cingulo-opercular task control network
AUD: auditory network 
DMN: default mode network 
MRN: memory retrieval network 
VN: visual network 
FPN: fronto parietal task control network 
SN: salience network
SCN: subcortical network 
VAN: ventral attention network
DAN: dorsal attention network 
CERE: cerebellum network

Introduction

• Linear non-Gaussian acyclic model (LiNGAM)

The observed random vector 𝑋 = 𝑋1, … , 𝑋𝑝 ∈ 𝑅𝑝
𝑋 = 𝐵𝑇𝑋 + 𝜖

B: weight matrix that can be permuted to be strictly lower triangular

𝜖: continuous r. v., 

Independent, non-Gaussian, zero means and non-zero variances

• Ψ-LiNGAM

- Idea: incorporate the undirected graph into LiNGAM for DAG estimation

- Principle: 𝐺𝑠𝑘𝑒 ⊂ 𝐺𝑢𝑛𝑑

- Procedure: 

1. Undirected graph estimations as prior using the ψ-learning method

2. Apply LiNGAM with the prior for DAG estimation

- Code: https://github.com/Aiying0512/psi-LiNGAM

- Advantages:

1. Integrate the undirected graph into the DAG model to facilitate casual 

inferences, and thus have faster convergence and computation speeds.

2. Capable for high-dimensional cases.

Method: ψ-LiNGAM

• In this paper, we propose a ψ-learning incorporated linear non-

Gaussian Acyclic model (ψ-LiNGAM) to study the casual 

interactions in human brain.

• Assumption: non-Gaussianity of the data, which we believe can 

help to identify the direction of the edge.

• Contribution:

1. Integrate the undirected graph as prior information into the DAG 

model to facilitate casual inferences.

2. Gain faster convergence and computation speeds.

3. The proposed method is stable with different settings and shows 

improved performance compared with 4 other methods.

4. The application to rs-fMRI data from PNC has successfully 

explained the cognitive variance through the directed FC.

Conclusions

• From association to causation

- Statistical associations can be problematic 

to reveal the true logical relationships.

- Causal studies pinpoint the key connectivity 

characteristics and remove redundant features 

for diagnosis.

• Directed acyclic graph (DAG)

- Directed and undirected graphs：

Each expresses a different 

independence property in a system.

- Notation: A graph G = (V,E)

V = {1, 2, ..., p}, the node set

E ⊂ V ×V, the edge set

Skeleton 𝐺𝑠𝑘𝑒: a DAG G without 

the directions

Moral graph 𝐺𝑚: the undirected 

graph converted from a DAG G

Results
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Materials
• Dataset: Philadelphia Neurodevelopmental Cohort (PNC)

• fMRI image

• Cognitive groups

Fig.4: Identified intra- (left) and inter- (right) module causal flows.

Total subjects: 855
Age range: 8-22

1-hour computerized 
neurocognitive 
battery (CNB) test

Wide range 
achievement test 
(WRAT) score

High WRAT Group:
63 subjects

Low WRAT Group: 
130 subjects

Age>18

z > 0.5

z < -0.5

|z| > 0.5

Resting state fMRI 

Standard preprocessing 
through SPM12

264 ROIs
124 time slices

Preprocessing steps:
• Motion correction 
• Co-registration
• Normalization
• Slice time correction
• Spatial smoothing
• Bandpass filtering: 0.01-0.1Hz

Simulation studies
• Settings:

- Simulated the random DAG G through the R package pcalg

- Average edge per node d =1,4

- Noise distribution: exponential

- Sample size (subject): n = 500

- Variable size (node): p = (50, 100, 200)

• Consider 5 estimation methods

- PC, GES, ICA-LiNGAM, Direct LiNGAM, ψ-LiNGAM

• Results:

Fig 1: Simulation results with the exponential noise setting, which represent the average 
performance in terms of TPR, FDR and SHD under various variable (p = 50, 100, 200) and 
average degree (d = 1, 4) with n = 500.

(a) high WRAT (b) low WRAT

Fig. 2: Directed brain connectivity for each group, 
where the arrows indicate the causal flow.

Group Density Transitivity Global 
Efficiency

High 0.119 0.0033 0.0121

Low 0.233 0.0032 0.0118

Table I: Network statistics

TABLE II. The number of edges that are 
significantly different for various Cohen’s d 
thresholds.

Pearson correlation

Partial correlation

PC DAG

Ψ-LiNGAM DAG

|d|> 0.2

|d|> 0.3

|d|> 0.4

|d|> 0.5

The right columns are the feature selected from the 
previous step.

TABLE III: The mean accuracies by SVM with 
various inputs.

Fig. 3: The 16 causal connections 
selected by Cohen’s d statistics with 
threshold |𝑑| > 0.4, where the arrows 
indicate the causal flow.
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