

Decoding Age-specific Changes in Brain Functional Connectivity Using a Sliding-window Based Clustering Method

碰 Columbia COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Aiying Zhang^{1,2}, Seonjoo Lee^{1,2,3}

¹ Mental Health Data Science, New York State Psychiatric Institute

² Department of Psychiatry, Columbia University Medical Center

³ Department of Biostatistics, Mailman School of Public Health, Columbia University

Abstract

Understanding the typical development of functional neural circuits may help us generate hypotheses regarding developmental psychopathologies. In this work, we aim to identify more nuanced age-period-specific functional connectivity (FC) development patterns. We proposed a sliding-window based clustering approach to identify a more refined age interval of development for the functional network. We used resting-state fMRI (rs-fMRI) data from the human connectome project-development (HCP-D), which recruited children, adolescents, and young adults ranging in age from 5 to 21 years. Our analysis revealed significant sex effects on the development patterns, which were consistent over measures. We extracted the FC network corresponding to each development pattern and summarized it from 3 aspects: global network statistics, modular connectivity, and development-related hubs. Several unique developmental hub structures and age-specific patterns were discovered.

Introduction

Investigating the functional neural circuits in normal development can

- Identify when development abnormalities arise
- Determine where, when, and how to intervene and thereby prevent illness persistence.
- Help generate hypotheses regarding the neural bases of

Materials

- Participants:
- From the human connectome project-development (HCP-D) [1]
- Healthy children, adolescents, and young adults
- Exclude participants with excessive head motion during scanning
 - N = 528Table I: Demographic information

	F (N=290)	M (N=238)	Total (N=528)
Age in month			
Mean	177.452	181.437	179.248
Min	76.000	67.000	67.000
Q1, Q3	140.250, 217.750	146.000, 221.000	144.000, 218.250
Max	263.000	263.000	263.000

- Image acquisition and pre-processing
- **Resting-state fMRI**
- **3T Siemens Prisma platform**
 - TR/TE= 800/37 ms, flip = 52, FOV= 208×180 mm, matrix = 104×90, slices = 72
 - Duration: age>8, 26 min; age<8, 21 min
- HCP minimal preprocessing pipelines [2]
- Cole parcellation [3]

Results

Identified development curves and characteristics

Female

- developmental psychopathologies
- Help to improve diagnosis and treatment

Maturation of functional connectivity (FC) can be examined by quantifying age-related changes in the strength and spatial distribution of intrinsic brain networks

Problems:

- The developmental evolution of FC is not following a linear trend over the adolescent period,
- The onset and the duration of the changes may vary from regions to regions

Aim: identify various age-period-specific FC developing patterns

- Describe the nonlinearity
- Cluster FCs by their developing curves •

Modular Connectivity

Fig 3: The significant intra- and inter- modular connectivity of each development pattern in male.

Conclusions

- Childhood-to-adolescence is a unique period of development, with major changes occurring across the brain at many different levels of brain functioning.
- · Females matured earlier than males in functional development, but males had higher development rate.
- The CON, FPN and DMN actively developed in both males and • females.
- Cerebellum has appeared as a hub area in development for both • genders, but at different age ranges.

Acknowledge

The work has been funded by NIH (R01MH124106).

Contact

Aiying Zhang **Columbia University** Email: Aiying.Zhang@nyspi.Columbia.edu Phone: (352) 281-9166

Poster: MT916

Major References

- 1. Somerville, Leah H. et al. 2018. "The Lifespan Human Connectome Project in Development: A Large-Scale Study of Brain Connectivity Development in 5–21 Year Olds." NeuroImage 183 (December): 456-68.
- 2. Glasser, Matthew F. et al. 2013. "The Minimal Preprocessing Pipelines for the Human Connectome Project." NeuroImage 80 (October): 105–24.
- 3. Ji, Jie Lisa, et al. 2019. "Mapping the Human Brain's Cortical-Subcortical Functional Network Organization." NeuroImage 185 (January): 35–57. https://doi.org/10.1016/j.neuroimage.2018.10.006.
- 4. Marsh, Rachel et al. 2008. "Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders." Journal of the American Academy of Child & Adolescent Psychiatry 47 (11): 1233–51.
- 5. Power, Jonathan D. et al. 2014. "Methods to Detect, Characterize, and Remove Motion Artifact in Resting State FMRI." NeuroImage 84 (Janua